#P11052. [2016杭电多校]A Boring Question
[2016杭电多校]A Boring Question
A Boring Question
Problem Description
There are an equation. $\sum_{0\leq k_{1},k_{2},\cdots k_{m} \leq n} \prod_{1\leqslant j <m}\binom{k_{j+1}}{k_{j}} \% 1000000007=?$ We define that $\binom{k_{j+1}}{k_{j}}=\frac{k_{j+1}!}{k_{j}!\left ( k_{j+1}-k_{j} \right )!}$ . And while . You have to get the answer for each and that given to you. For example,if ,, When $k_{1}=0,k_{2} = 0,k_{3} = 0,\binom{k_{2}}{k_{1}}\binom{k_{3}}{k_{2}}=1$; When$k_{1}=0,k_{2} = 1,k_{3} = 0,\binom{k_{2}}{k_{1}}\binom{k_{3}}{k_{2}}=0$; When$k_{1}=1,k_{2} = 0,k_{3} = 0,\binom{k_{2}}{k_{1}}\binom{k_{3}}{k_{2}}=0$; When$k_{1}=1,k_{2} = 1,k_{3} = 0,\binom{k_{2}}{k_{1}}\binom{k_{3}}{k_{2}}=0$; When$k_{1}=0,k_{2} = 0,k_{3} = 1,\binom{k_{2}}{k_{1}}\binom{k_{3}}{k_{2}}=1$; When$k_{1}=0,k_{2} = 1,k_{3} = 1,\binom{k_{2}}{k_{1}}\binom{k_{3}}{k_{2}}=1$; When$k_{1}=1,k_{2} = 0,k_{3} = 1,\binom{k_{2}}{k_{1}}\binom{k_{3}}{k_{2}}=0$; When$k_{1}=1,k_{2} = 1,k_{3} = 1,\binom{k_{2}}{k_{1}}\binom{k_{3}}{k_{2}}=1$. So the answer is 4.
Input
The first line of the input contains the only integer , Then lines follow,the i-th line contains two integers ,,
Output
For each and ,output the answer in a single line.
Sample Input
2
1 2
2 3
Sample Output
3
13
Author
UESTC
Source
2016 Multi-University Training Contest 6