#P5455. spoj DIVCNT2

spoj DIVCNT2

DIVCNT2 - Counting Divisors (square)

题面翻译

σ0(i)\sigma_0(i) 表示ii 的约数个数

S2(n)=i=1nσ0(i2)S_2(n)=\sum_{i=1}^n\sigma_0(i^2)

多测。

答案对2642^{64}取模。

数据范围:

Translated by @Kelin

题目描述

Let σ0(n) \sigma_0(n) be the number of positive divisors of n n .

For example, σ0(1)=1 \sigma_0(1) = 1 , σ0(2)=2 \sigma_0(2) = 2 and σ0(6)=4 \sigma_0(6) = 4 .

Let

S2(n)=i=1nσ0(i2).S_2(n) = \sum _{i=1}^n \sigma_0(i^2).

Given N N , find S2(N) S_2(N) .

输入格式

First line contains T T ( 1T10000 1 \le T \le 10000 ), the number of test cases.

Each of the next T T lines contains a single integer N N . ( 1N1012 1 \le N \le 10^{12} )

输出格式

For each number N N , output a single line containing S2(N) S_2(N) .

样例 #1

样例输入 #1

5
1
2
3
10
100

样例输出 #1

1
4
7
48
1194