#P7828. A Very Easy Math Problem

A Very Easy Math Problem

A Very Easy Math Problem

Problem Description

Given you n,x,kn,x,k , find the value of the following formula:

$$\sum_{a_1=1}^{n}\sum_{a_2=1}^{n}\ldots \sum_{a_x=1}^{n}\left (\prod_{j=1}^{x}a_j^k\right )f(\gcd(a_1,a_2,\ldots ,a_x))\cdot \gcd(a_1,a_2,\ldots ,a_x) $$

gcd(a1,a2,,an)\gcd(a_1,a_2,\ldots ,a_n) is the greatest common divisor of a1,a2,...,ana_1,a_2,...,a_n. The function f(x)f(x) is defined as follows: If there exists an ingeter k (k>1)k\ (k>1) , and k2k^2 is a divisor of xx, then f(x)=0f(x)=0, else f(x)=1f(x)=1.

Input

The first line contains three integers $t,k,x\ (1\le t \le 10^4,1\le k\le 10^9,1\le x\le 10^9)$ Then tt test cases follow. Each test case contains an integer n (1n2×105)n\ (1\le n\le 2\times 10^5)

Output

For each test case, print one integer — the value of the formula. Because the answer may be very large, please output the answer modulo 109+710^9+7.

Sample Input

3 1 3
56
5
20

Sample Output

139615686
4017
11554723

Source

2020 Multi-University Training Contest 6