#P9855. Vector

Vector

Vector

Problem Description

Given four three-dimensional vectors A1,A2,A3,A4A_1, A_2, A_3, A_4, determine whether there exist non-negative real numbers x1,x2,x3x_1, x_2, x_3 that satisfy the following equation:

x1A1+x2A2+x3A3=A4x_1A_1 + x_2A_2 + x_3A_3 = A_4

Here, Ai=(ai1,ai2,ai3)A_i = (a_{i1}, a_{i2}, a_{i3}) represents the components of the three-dimensional vector AiA_i. For example, A1=(3,4,4)A_1=(3,4,4), A2=(4,3,0)A_2=(4,3,0), A3=(2,3,2)A_3=(2,3,2), A4=(9,10,6)A_4=(9,10,6) has a non-negative solution because A1+A2+A3=A4A_1+A_2+A_3 = A_4.

Input

The first line contains an integer TT 1T1000(1 \leq T \leq 1000), representing the number of test cases. Each test case consists of a single line containing 1212 integers in $a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}, a_{41}, a_{42}, a_{43}(0 \leq a_{ij} \leq 10^4,1\leq i \leq 4,1\leq j \leq 3)$, representing the components of the four three-dimensional vectors A1,A2,A3,A4A_1, A_2, A_3, A_4.

Output

For each test case, output a single line containing either "YES" or "NO", indicating whether a non-negative solution exists. If a non-negative solution exists, output "YES"; otherwise, output "NO".

Sample Input

2
3 4 4 4 3 0 2 3 2 9 10 6
0 3 1 0 1 3 4 0 4 4 1 10

Sample Output

YES
NO

Source

2023“钉耙编程”中国大学生算法设计超级联赛(6)