#x1010. CF1228E Another Filling the Grid

CF1228E Another Filling the Grid

Another Filling the Grid

题面翻译

给定一个 n×nn\times n 的矩阵,用 1k1\sim k 的数填充,每行每列最小值均为 11,问有多少填法,对 109+710^9+7 取模。

1n250,1k1091\le n\le 250,1\le k\le 10^9

题目描述

You have n×n n \times n square grid and an integer k k . Put an integer in each cell while satisfying the conditions below.

  • All numbers in the grid should be between 1 1 and k k inclusive.
  • Minimum number of the i i -th row is 1 1 ( 1in 1 \le i \le n ).
  • Minimum number of the j j -th column is 1 1 ( 1jn 1 \le j \le n ).

Find the number of ways to put integers in the grid. Since the answer can be very large, find the answer modulo (109+7) (10^{9} + 7) .

These are the examples of valid and invalid grid when n=k=2 n=k=2 .

输入格式

The only line contains two integers n n and k k ( 1n250 1 \le n \le 250 , 1k109 1 \le k \le 10^{9} ).

输出格式

Print the answer modulo (109+7) (10^{9} + 7) .

样例 #1

样例输入 #1

2 2

样例输出 #1

7

样例 #2

样例输入 #2

123 456789

样例输出 #2

689974806

提示

In the first example, following 7 7 cases are possible.

In the second example, make sure you print the answer modulo (109+7) (10^{9} + 7) .