#x1017. CF1097G Vladislav and a Great Legend
CF1097G Vladislav and a Great Legend
Vladislav and a Great Legend
题面翻译
题目描述
给你一棵有个节点的树,个节点编号为到。
对于中每个非空的顶点的集合,令为包含中每个节点的最小连通子树的最小边数,即虚树的大小。
再给你一个整数。你需要计算对于每一个顶点的集合,之和,即:
$$\sum_{X\subseteq\{1,2,\dots,n\},X\neq\varnothing}(f(X))^k $$输入输出格式
输入格式
第一行两个整数和,表示树的节点个数和的次数
接下来行,每一行包含两个正整数和,表示中的每一条边。
数据保证一定是一棵树。
输出格式
一行一个整数,表示所求的答案对取模后的值。
题目描述
A great legend used to be here, but some troll hacked Codeforces and erased it. Too bad for us, but in the troll society he earned a title of an ultimate-greatest-over troll. At least for them, it's something good. And maybe a formal statement will be even better for us?
You are given a tree with vertices numbered from to . For every non-empty subset of vertices of , let be the minimum number of edges in the smallest connected subtree of which contains every vertex from .
You're also given an integer . You need to compute the sum of among all non-empty subsets of vertices, that is:
$$\sum\limits_{X \subseteq \{1, 2,\: \dots \:, n\},\, X \neq \varnothing} (f(X))^k. $$输入格式
The first line contains two integers and ( , ) — the size of the tree and the exponent in the sum above.
Each of the following lines contains two integers and ( ) — the indices of the vertices connected by the corresponding edge.
It is guaranteed, that the edges form a tree.
输出格式
Print a single integer — the requested sum modulo .
样例 #1
样例输入 #1
4 1
1 2
2 3
2 4
样例输出 #1
21
样例 #2
样例输入 #2
4 2
1 2
2 3
2 4
样例输出 #2
45
样例 #3
样例输入 #3
5 3
1 2
2 3
3 4
4 5
样例输出 #3
780
提示
In the first two examples, the values of are as follows: