#x1062. CF1198E Rectangle Painting 2

CF1198E Rectangle Painting 2

Rectangle Painting 2

题面翻译

有一个nnn*n的网格,网格中有一些点是黑的,其他点都是白的。你每次可以花费min(h,w)\min(h,w)的代价把一个hwh*w的矩形区域变白。求把所有黑格变白的最小代价。

输入格式

第一行2个整数nn,mm1n109,0m501\le n \le 10^9,0\le m\le 50),分别代表正方形网格的大小和黑色矩形的数量。

接下来mm行,每行44个整数xi1,yi1,xi2,yi2x_{i1},y_{i1},x_{i2},y_{i2}($1\le x_{i1}\le x_{i2}\le n,1\le y_{i1}\le y_{i2}\le n$),分别代表黑色矩形左下角的格子和右上角的格子。(显然,黑色矩形里的格子都是黑的。)

黑色矩形可能相交。

输出格式

一个整数:把所有格子变白的最小代价。

题目描述

There is a square grid of size n×n n \times n . Some cells are colored in black, all others are colored in white. In one operation you can select some rectangle and color all its cells in white. It costs min(h,w) \min(h, w) to color a rectangle of size h×w h \times w . You are to make all cells white for minimum total cost.

The square is large, so we give it to you in a compressed way. The set of black cells is the union of m m rectangles.

输入格式

The first line contains two integers n n and m m ( 1n109 1 \le n \le 10^{9} , 0m50 0 \le m \le 50 ) — the size of the square grid and the number of black rectangles.

Each of the next m m lines contains 4 integers xi1 x_{i1} yi1 y_{i1} xi2 x_{i2} yi2 y_{i2} ( 1xi1xi2n 1 \le x_{i1} \le x_{i2} \le n , 1yi1yi2n 1 \le y_{i1} \le y_{i2} \le n ) — the coordinates of the bottom-left and the top-right corner cells of the i i -th black rectangle.

The rectangles may intersect.

输出格式

Print a single integer — the minimum total cost of painting the whole square in white.

样例 #1

样例输入 #1

10 2
4 1 5 10
1 4 10 5

样例输出 #1

4

样例 #2

样例输入 #2

7 6
2 1 2 1
4 2 4 3
2 5 2 5
2 3 5 3
1 2 1 2
3 2 5 3

样例输出 #2

3

提示

The examples and some of optimal solutions are shown on the pictures below.